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TECHNICAL MEMORANDUM

HIGH-SPEED OBSERVER: AUTOMATED STREAK
DETECTION FOR THE AEROSPIKE ENGINE

1.  INTRODUCTION

During Space Shuttle main engine (SSME) firing, in both test and flight, visual streaking in
engine plumes has been observed. Under normal circumstances, combustion of liquid hydrogen (LH2)
and liquid oxygen (lox) yields nearly transparent plumes. Bright, distinguishable streaks in engine
plumes are possible indicators of abnormal events. The High-Speed Observer (HSO) concept
demonstrator program began with the goal of demonstrating that SSME engine streaks, which might
indicate engine malfunction, could be detected using video and automating the detection process. The
program was extended to include development of an expert system that detects, quantifies, and reports
anomalous streaks in the SSME plumes.

The HSO technology, developed for detecting and differentiating SSME plumes, has been
extended to incorporate detection and differentiation of anomalous plume streaking for the aerospike
engine structure and plume characteristics. In changing from SSME to aerospike plume analysis
operation, both hardware and software upgrades were necessary. This memorandum documents
upgrades to the HSO system and results of HSO monitoring of aerospike engine tests on the test stand
A1 at Stennis Space Center (SSC).
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2.  HIGH-SPEED OBSERVER SYSTEM

The basic HSO system uses a 200-frames per second (fps), 256 × 256 pixel DALSA® CCD array
camera to generate 8-bit gray scale digital images. This camera is mounted inside a PELCO® EHX6–12
explosion-proof housing for protection against the rugged environment experienced during testing. The
HSO camera position at SSC used for single-engine testing is shown in figure 1. The current HSO system
uses a dual Intel Pentium® Pro 200-MHz computer running Microsoft Windows® NT with a BitFlow, Inc.
Road Runner frame capture board to process images in real time. Each image frame is encoded with
interrange instrumentation group (IRIG) timing and recorded on a 17.2-gigabyte (GB) redundant array of
inexpensive disks (RAID) system. After testing, images are stored on an 8-mm Exabyte® tape and shipped
to Marshall Space Flight Center (MSFC) for posttest analysis.

The aerospike engine configuration differs significantly from that of an SSME. Modifications to
the method of operation of the HSO were made to accommodate engine differences. At present, only one
side of a single module of the engine (cover photo) is being monitored for anomalous plume streaking
with only one operational camera (HSO II) as shown in figure 2. Another camera (HSO III) will be
added when the full-up configuration of the aerospike engine (two of the modules shown in the cover
photo) is tested.

Figure 1.  HSO camera and aerospike engine at SSC.
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2.1  High-Speed Observer Hardware Upgrades

Hardware upgrades to the HSO system included (1) installation of an input/output (I/O) board and

communications link to detect test initiation and shutdown, (2) repositioning of the HSO client system

and camera, and (3) a new replacement RAID disk system for the HSO server.

(1)  Installation of an I/O board and communications link to detect test initiation and shutdown—

A communication link was established to allow the HSO system access to the test start and

test cutoff signals.

(2)  Repositioning of the HSO server system and camera—The HSO camera position at SSC for

aerospike engine tests has been changed from the position of the last series of SSME tests.

The ideal camera position on the test stand would be perpendicular to the line of combustors

and on or slightly above a plane horizontal with the midpoint between combustor exit planes

and the edge of the ramp. Although, the view angle from the camera to the combustors is not

a right angle, making a head-on view unavailable, it is sufficient to provide separation of

combustor plume areas. The height positioning of the camera provides the necessary single

line of reference at the combustor exit plane for the region of interest.

Figure 2.  HSO hardware configurations.
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(3)  A new replacement RAID disk system for the HSO server—The previous 9–GB RAID

system used to store images failed and a new disk system was necessary. The new system

can store ≈17 GB and transfer data at 40 megabytes (MB)/sec compared to the old 9-GB

system that had a 15-MB/sec data transfer rate. This provides additional capability for

camera operation at maximum frame acquisition speed.

2.2  High-Speed Observer Software and Evaluation Model Modifications

Initial software upgrades to the HSO system included (1) an HSO server routine to monitor test
status and initiate camera functions, (2) modification to region of interest, (3) elimination of quality
region; subsequent changes in software included (4) a new streak detection algorithm.

(1) Routine to monitor test status and initiate camera functions—A software routine was written
for the HSO server to monitor the test status communications link and initiate camera
operation upon receipt of the test initiation signal. The software also stops camera operation
and initiates backup procedures when the test cutoff signal is received.

(2) Modifications to the region of interest—Each side of the aerospike engine is composed
of a set of combustors, each producing a plume to be monitored. As with the SSME plume
monitoring setup, the region of interest was broken into separate columns, each column
evaluating the plume of one combustor. There were ten such columns, with each column
composed of three tiles. There were no overlapping tiles in the setup for monitoring this
engine.

(3) Elimination of the quality region—The quality region, centered on the Mach disc of an
SSME plume, had been used as an intensity control area. An image was assumed to be
valid if the quality region intensity remained above a threshold value. The aerospike engine
has no such stable gray-scale value region readily available. At present, all images are
assumed valid from engine start to cutoff, unless they are totally black.

As the testing program progressed, more software changes were necessary. The algorithm
to detect streaks was determined to be inadequate to resolve the type of streaking observed
in test A1X023. Whereas SSME plume streaks are broad and generally increase brightness
over a large area, aerospike plume streaks observed tend to be thin and do not necessarily
increase the brightness level significantly. A new algorithm was implemented to detect
streaks.

(4)  Development of new streak detection algorithm—A new algorithm to detect streaks was
developed. This algorithm searches a path parallel to the ramp edge, looking for intensity
changes indicative of streaks. Upon finding such intensity changes, an attempt is made to
grow a path of pixels with similar intensity values from that point to a point near the
thrusters on the opposite side of the ramp. If such a path can be found, the path is judged
to be a streak.
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3.  AEROSPIKE STREAK DETECTION ALGORITHM

The SSME streak detection algorithm was found to be inadequate for detecting streaks in plumes
produced by an aerospike engine. The SSME algorithm employed a threshold tile algorithm to detect
streaks. The arrangement of aerospike thrusters required reassessment of column structure for detecting
brightness increases:

1. Over time, aerospike plumes generate an intensity profile with both high and low average
levels. By setting a general, static streak, intensity threshold, as with the SSME streak detec-
tion algorithm, either many possible streaks were removed from consideration or during
certain time periods everything was considered a streak.

2. The aerospike cooling ramp induced bright areas having many characteristics of plume
streaks. There was no such structure needing compensation with SSME plume analysis.

3. Whereas SSME streaks are often broad and provide substantial brightness increases in
plumes, aerospike streaks are thin and do not significantly raise overall brightness levels.

4. An additional problem, which became apparent when streaks were present, was water on the
camera faceplate. Because of the thin nature of the aerospike plume streaks, a droplet of water
on the camera faceplate can cause a dark area in the image and streaks that cross into this area
appear to be discontinuous across the plane of the ramp.

To account for these differences, a new streak detection algorithm was created. First, a control
intensity value for streak detection is determined for each frame (fig. 3):

1. A column of pixels midway down the ramp from the thrusters to the end of the ramp is chosen
to be a control column.

2. An average of the pixel intensity values along the column, which are less than the “wash-out”
intensity of a bloom region, is obtained.

3.  A maximum of the pixel intensities, which are less than the wash-out intensity of a bloom
region, is also obtained.

4. The control intensity value for detecting streaks is determined as 80 percent of the difference
from the average to the maximum intensity.
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Next, candidate streak seed points are chosen from local maxima along a row of pixels at the
edge of the ramp (fig. 4):

1.  Along the column of pixels at the end of the ramp area, local maxima are consecutively
selected and tested.

2. If a local maximum value is not greater than the control intensity, it is not considered as a
candidate for a streak.

3. If a local maximum value is greater than the control intensity, a streak growth algorithm,
using local greatest intensity values is initiated.

Figure 4.  Candidate streak selection.

Figure 3.  Control value intensity determination for an image frame.
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Candidate streaks are grown from local intensity value maxima in the pixel column at the end of
the ramp (fig. 5):

1.  Local maximum intensity values above the control intensity value provide initial seeds for the
growth algorithm.
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2.  Three adjacent pixels in the streak growth direction; i.e., toward the thrusters, are tested.

3.  The pixel with the highest value within 15 percent or above the control intensity value is
chosen as the next seed pixel.

4.  If all three pixels have intensity values <15 percent of the control value, the next three adjacent
pixels are tested. This process is repeated up to five times. If no seed pixel is detected, the
streak growth is ended and the next local maximum in the pixel column at the end of the ramp
is inspected.

5.  If the column of pixels near the thrusters is encountered, the algorithm labels the starting  local
maximum as a streak generating pixel.

Figure 5.  Streak growing algorithm.
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The streak length and streak growth direction confirm candidate streaks (fig. 6):

1.  Each thruster provides a lane for growth of a streak; i.e., a streak should not enter the plume of
two thruster plumes. There are 10 thrusters on the aerospike panel and the number of pixels in
a column covering a single plume area averages ≈110. Therefore, no streak should grow in the
column direction more than 11 pixels from the starting pixel column location.

2.  The pixel distance from the end of the ramp to the beginning of the ramp near the thrusters
averages 120 pixels, a growing-slope ratio of ≈10 percent.

3.  A growing-slope ratio bound of ≈15 percent, evaluated as the streak is growing, serves to keep
the streak growth reasonably within a plume. This check is initiated only after the streak has
grown by 10 pixels.

4.  If a growing path reaches the pixel column at the beginning of the ramp, this indicates a
reportable streak was found.
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This streak detection algorithm was tested and found to recognize streaks in aerospike engine
plumes. It can discriminate many of the near streak-type events from true streaks and deal with certain
types of anomalous events which prevent contiguous pixels in a streak from being illuminated; i.e.,
water droplets on the camera faceplate. This algorithm was first implemented on aerospike engine test
A1X023 data.

Figure 6.  Streak confirmation.
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4.  AEROSPIKE ENGINE RAMP CHARACTERISTICS

The ramp of the aerospike engine is cooled much like the nozzle bell of the SSME. Several
temperature-dependent areas on the ramp produce light colored areas that often appear in the same
intensity range and run in the same directions as streaks (fig. 7). The streak growth algorithm attempts
to take this into account as it traverses the path of the suspected streak.

Note that true engine streaks are usually visible from the end of the ramp up to the thruster
nozzle exit area. Because of the higher average intensity value of pixels in the nozzle exit area, the
differences in intensity of streak pixels to pixels surrounding the streak in the thruster nozzle exit area
are consequently a little less.

If an engine streak exists and a growth path reaches one of the temperature-dependent streak
patterns of the ramp near the nozzle exit area, it is probable that the growth algorithm will complete the
path and a streak will be reported, since the intensity of the streak and the temperature dependent area
become very similar. Conversely, if a streak does not exist, it is entirely possible that a partial streak
growth path matches with one of the temperature dependent high intensity areas and the streak growth
algorithm will push forward to the beginning part of the ramp and report a streak.

The 80-percent value between the maximum and the average value for a pixel row midway
between the dark end section of ramp area and lighter nozzle exit area portions of the ramp will exclude
many false streaks that would grow along a ramp temperature induced intensity line since intersections
with these lines are included in the average calculation. However, close-in to the thruster nozzle exit
planes, nearly all streak candidates will finish their growth paths. Most incomplete growth paths are
weeded out early and certainly before 90 percent of a complete streak path is final.

Figure 7.  Aerospike ramp temperature-dependent lines and streak growth.
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5.  CATEGORIES OF HIGH-SPEED OBSERVER OBSERVED
AEROSPIKE ENGINE EVENTS

Several types of events have been observed during aerospike engine testing. None have led to
catastrophic failure; therefore, none are judged to be critical. Some have, however, been associated with
damage to thrusters. Most of these events (shown in fig. 8) are plume fluctuations that have not been
correlated to any specific event. These events do produce spikes in the average intensity data calculated
across one row of pixels parallel to the lower edge and in the midsection of the ramp.
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Figure 8.  Categories of HSO observed events.
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6.  CHARGE-COUPLED DEVICE BLOOM MITIGATION

Blooming (a voltage well of a pixel fills, spilling charge into adjacent pixels) has become a
problem for capturing data near the outboard side of the present aerospike engine configuration. An
ablative layer was applied to the outboard side of the engine ramp. This layer glowed brightly during
engine firing and produced substantial blooming in the DALSA Camera CCD. The intensity of the
outboard ramp edge overfills pixel charge wells and large areas of the ramp can be obscured due to the
bloom. No significant information can be gained from this area.

Blooming on the HSO DALSA camera spills charge directionally along a column of pixels. On
tests A1X024–A1X026, the charge spilling direction of the camera was directed onto the ramp area from
the edge (fig. 9). To mitigate the effects of blooming on the HSO camera, the camera was turned 180
degrees. Since the bloom originated near the edge of the ramp, this reversal of charge spilling direction
within the camera allowed the charge to drain away from the ramp area.

Turning the DALSA camera 180 degrees in its mount partially mitigated the blooming problem.
As shown in figure 10, the direction of blooming moved away from the origination area on the ramp
toward the frame edge. Note the bloom direction travels in the opposite direction from that in figure 9.
A wraparound effect, however, continued the bloom and made it reappear on the opposite side of the
frame. At 100-percent power level, the bloomed area entered the ramp area from the side of the frame
opposite the area where the bloom initiated and eventually touched the area where the bloom had initi-
ated. Even at power levels <100 percent, it appeared the distance from the bloom initiation point to the
frame edge was not sufficient to absorb enough energy to prevent the wraparound blooming effect.

Figure 9.  Growth of bloom during test A1X026.
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Since the bloom originated in an area at the side of the ramp, turning the camera, so that the
bloom proceeded parallel to the plume flow across the ramp, allowed the camera CCD to bloom, yet
preserved much of the image for streak analysis. Figure 11 illustrates the growth of the bloom. Only
the region directly below or above the glowing ablative layer is affected by the bloom, permitting streak
analysis of most of the thruster exhaust plume area.

Figure 11.  Growth of bloom during test A1X030.

Figure 10.  Growth of bloom during test A1X027.
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7.  RESULTS

Data from thirteen aerospike engine tests at SSC, A1X019–A1X031, have been obtained and
processed. The following section includes the analysis and results of that HSO data. Engine test A1X023
motivated the change in streak detection algorithm. Tests preceding A1X023 were reevaluated using the
newer streak detection algorithm.

In addition to the streak algorithm being tested on data from each test, each data set was ob-
served visually and observations recorded. This was done to check the accuracy of the streak detection
algorithm. It is sometimes difficult to determine exactly on which thruster an event occurred and the
event from the designated thruster may have occurred on the adjacent thruster plume boundary. The best
estimate of the origin of the event is listed.

7.1  Engine Test A1X019

This aerospike engine test was performed at SSC on test stand A1 on Wednesday, November 17,
09:41:43, 1999. No substantial streaks were observed by the HSO system and visual inspection of data
revealed no significant streaks.

7.2  Engine Test A1X020

This aerospike engine ignition test was performed at SSC on test stand A1 on October 27, 1999,
at 6:20 p.m. No substantial streaks were observed by the HSO system and visual inspection of data
revealed no significant streaks.

A series of small diffuse anomalies occurred between 300:18:20:26.619 and 300:18:20:26.642
c.s.t. Another very diffuse streak-like anomaly occurred at 300:18:20:25.372 c.s.t.

7.3  Engine Test A1X021

This aerospike engine test was performed at SSC on test stand A1 on November 11, 1999. The
test ran the planned 10 sec. No substantial streaks were observed by the HSO system and visual inspec-
tion of data revealed no significant streaks.

There were numerous small diffuse streaks observed on this test. Sixteen of the anomalous events
were on fuel side thruster No. 1 (FS–1), four were on FS–3, three were on FS–6, one was on FS–5, and
one on FS–8.

7.4  Engine Test A1X022

This aerospike engine test was performed at SSC on test stand A1 on November 22, 1999. No
substantial streaks were observed by the HSO system and visual inspection of data revealed no signifi-
cant streaks.
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7.5  Engine Test A1X023

This aerospike engine test was performed at SSC on test stand A1 on December 18, 1999.
Planned duration of the test, 10 sec, was achieved.

The streak detection algorithm detected streaks in frames 2998, 3003–3005, 3021–3027, and
3169. Visual inspection of image data revealed streaks observed in frames 2997–2999, 3003–3005,
3019–3027, 3111, and 3169–3172 at thruster FS–4. Posttest inspection of the hardware revealed erosion
in this thruster.

Table 1 lists the frames where a streak was reported by the new streak detection algorithm. The
older streak detection algorithm had failed to detect any streaks during this test. Also listed in table 1 are
the 80-percent level intensity control value, the intensity value observed for the local maximum which
was selected as the seed point for growing possible streak, and the location of the seed point for growing
the streak path. Figure 12 illustrates the type of streak observed during test A1X023.
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Figure 12.  Streak detection: test A1X023/frame 3021.

Table 1.  Streaks detected in test A1X023.
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The streaks noted in test A1X023 are long and thin; they begin at the thruster exit plane and
extend past the ramp. The boundaries of the streaks are well defined with intensity levels within the
streaks much greater than the average intensity of the surrounding pixels.

Figure 13 illustrates the operation of the streak detection algorithm. The three intensity values,
the mean intensity of a column, the maximum intensity of the pixels in a column, and the control inten-
sity used to determine a threshold value for local maxima selected as seed pixels, are shown in the figure
from 0 to 4200 frames. A closeup of the region from frames 2990 to 3040 shows the pixels chosen as
seed points and their relation to the control intensity.
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Streaks are usually the brightest elements in a frame and are therefore related to the maximum
intensity. The streak intensity value changes along the length of the streak path and a range of values
must be allowed to admit enough values along the streak path for the streak path to reach the nozzle exit
plane. The average intensity provides a floor for the intensity values along a column. The intensity of
this floor changes with each frame. In figure 13, near frame 1750 the average intensity is ≈40, whereas
near frame 3250 the average intensity is ≈20, indicating an overall average brightness change of ≈20
units between control columns in the two frames. The nonnormalized intensity value of ≈75 near frame
1750 does not indicate a streak when normalized with the high average column intensity, whereas the
nonnormalized intensity value of 79 at frame 3024 normalized against the control intensity of ≈20,
indicates a possible streak.

Figure 13.  Intensity values used to determine a streak.
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7.6  Engine Test A1X024

Aerospike engine test A1X024 was performed on test stand A1 at SSC on Friday, January 21,
2000, at 10:09 p.m. c.s.t. The test ran the planned 60 sec. No substantial streaks were observed by the
HSO system and visual inspection of data revealed no significant streaks.

7.7  Engine Test A1X025

The aerospike engine test A1X025 occurred at SSC on Thursday, February 3, 2000, at 16:50 p.m.
c.s.t. Planned duration of the test, 125 sec, was achieved.

Video real-time observation by test stand operators indicated three significant streaks from the
thrusters. Preliminary inspections showed several of the base flex seal straps to be broken and several
burnthrough areas in the base flex seal covering. Tactile inspection of the thrusters indicated a coolant
channel burnthrough in two thrusters.

Due to blooming, no substantial streaks were observed by the HSO system and visual inspection
of data was unable to reveal significant streaks.

7.8  Engine Test A1X026

The aerospike engine test A1X026 occurred at SSC on Wednesday, February 16, 2000, at 4:27 p.m.
c.s.t. Planned duration of the test, 175 sec, was achieved.

HSO operated from T–5 seconds until the end of test as programmed, recording 30,800 images for
an average run speed of ≈170 fps. No substantial streaks were observed by the HSO system and visual
inspection of data revealed no significant streaks. However, blooming effects as shown in figure 9, such as
experienced during the last tests, precluded detection of engine streaks over a large section of the ramp.

7.9  Engine Test A1X027

The aerospike engine test A1X027 occurred at SSC on Thursday, March 9, 2000, at 3:26 p.m. c.s.t.
Planned duration of the test was 220 sec. The test was terminated at 75.44 sec by the Fuel Pump Discharge
Pressure Control Qualification limit. This was the first engine redline system cutoff.

The HSO system operated from T–7 sec until engine shutdown, recording 14,174 images for an
average run speed of ≈173 fps. No substantial streaks were observed by the HSO system. Several flashes
were observed during the test. These flashes were not considered anomalous.

7.10  Engine Test A1X028

The aerospike engine test A1X028 occurred at SSC on March 22, 2000, at ≈7:00 p.m. c.s.t. The
test duration was ≈225 sec.

The HSO system began operation at T–7 sec (82:19:00:00.470 c.s.t.), recording 38,498 images for
an average camera speed of ≈170 fps. No substantial streaks were observed by the HSO system. However,
several flashes were observed near the FS–3 and FS–4 thruster locations during the test.
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7.11  Engine Test A1X029

The aerospike engine test A1X029 occurred at SSC on April 6, 2000 at ≈10:27 p.m. c.s.t.
The test duration was ≈235.0 sec.

The HSO system began operation at T-7 sec (97:22:26:57.299 c.s.t.), recording 44,098 images
for an average camera speed of ≈180 fps. No substantial streaks were observed by the HSO system.
One faint flash was observed. This flash was not considered anomalous and was probably a debris-
induced streak. However, bloom was still a problem, with at least 50 percent of the ramp area obscured
by bloom during portions of the test.

7.12  Engine Test A1X030

The aerospike engine test A1X030 occurred at SSC on May 2, 2000, at ≈4:00 p.m. c.s.t.
The test duration was ≈250 sec.

The HSO system began operation at T–7 sec (123:16:55:59:986 c.s.t.), recording 46,538
images for an average camera speed of ≈173 fps. No substantial streaks were observed by the HSO
system. However, several small flashes were observed during the test. One faint flash at
123:16:57:37.838 c.s.t., another flash at 123:16:58:15.002 c.s.t., and a third very faint flash at
123:16:59:40.708 c.s.t. Rotation of the camera allowed the bloom to proceed vertically, providing a
minimal area obscured by the bloom.

7.13  Engine Test A1X031

The aerospike engine test A1X031 was conducted at the SSC on May 12, 2000, at ≈4:30 p.m.
c.s.t.. The test was terminated at ≈290 sec by the test conductor due to a flex seal burnthrough.

The HSO system began operation at 133:16:49:13.247 c.s.t. and ended operation at
133:16:54:09.290 c.s.t., recording 50,738 images over 296.043 sec for an average camera speed of
≈171 fps. No substantial streaks were observed by the HSO system.

Changes to the fuel mixture ratio and power level were evident in the aerospike engine plumes
in the area just beyond the ramp. Figure 14 illustrates a narrowing of the bright area of the plume
below the ramp, which corresponds to the change to a 63-percent power level and mixture ratio of 5.

Prior to the flex seal burnthrough, a number of streaks were observed in the plumes below the
ramp. Figure 15 illustrates several such streaks. The streaks occurred in the region where the
burnthrough was noted.

A glowing area appeared at the edge of the ramp, shown in figure 16, in the region of the
burnthrough, well before the thermal protective flex seal material became evident as it dropped into
the plume.
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133:16:53:42.991 133:16:53:42.997 133:16:53:43.002 133:16:53:43.008

133:16:53:43.941 133:16:53:44.004 133:16:53:44.089

133:16:53:53.031 133:16:54:05.474

Figure 14.  Power level and mixture ratio changes.

Figure 15.  Plume streaks.

Figure 16.  Glowing area on ramp and flex seal material.
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8.  DISCUSSION

The HSO system has shown the ability to monitor SSME and aerospike engine tests and quickly
report the occurrence of anomalous engine streaking. The hardware and software systems are easily re-
configurable with off-the-shelf hardware and software and can provide streak data for health monitoring
of LH2-lox engines. Additionally, the HSO system can be used for indepth posttest analysis of all plume
events. Reported events can be evaluated against hardware inspection results and correlated with
hardware failure.

From the testing accomplished using the new streak detection algorithm, major streaks were
correctly distinguished from the myriad of minor fluctuations that occur during engine test. This
technique is not limited to the aerospike engine characteristics and can be applied to the SSME plumes
to detect streaks as well. Adaptation of the algorithm to streak detection in SSME plumes at the launch
site is the next step in evolution of the HSO project.

Due to the wide range of intensities encountered in the aerospike engine plume images, it was
natural to encounter bloom. The only possibilities for bloom mitigation for the DALSA camera presently
used are reduction of the light entering the camera aperture or orientation of the camera so that bloom
proceeds away from the area being investigated. The gray-scale intensity of light (0–255) in the areas
not being affected by bloom averaged between 10 (dark areas) and 50 (near thruster exit planes) as
compared to areas affected by bloom which had values >255, creating spillover to adjacent pixels.
Solutions to bloom mitigation that reduced the intensity of light were not the most favored solutions.
Such solutions would also reduce the ability of the system to accurately distinguish streaks, since the
margin of error on streak intensity detection would be increased corresponding to the amount of light
reduction. Fortunately, bloom mitigation was accomplished by orientation of the camera in a direction
so that the bloom did not encroach upon the ramp area. In the future, the DALSA cameras employed
will be upgraded to include antibloom technology.
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